National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
PREPARATION AND CHARACTERIZATION OF BIOPOLYMER-BASED NANOPARTICLES AND NANOFIBERS AND THEIR APPLICATION IN FOOD AND COSMETICS
Kundrát, Vojtěch ; Vilčáková, Jarmila (referee) ; Kráčmar, Stanislav (referee) ; Márová, Ivana (advisor)
The presented dissertation thesis deals with the polymer polyhydroxybutyrate and other biopolymers as a basic building block for the construction of micro- and nanoscopic structures and materials used in food and cosmetics. In the theoretical part, current literary review is prepared to introduce the basics of this application field. The practical part of the work is composed of three blocks developed during the doctoral study. In the first and most important part are summarized comments to the academic and patent outputs, where among the academic ones it is possible to find two peer-reviewed articles dealing with the electrostatic and wet spinning of PHB and properties of prepared materials. The patent outputs consist of several accepted and applied projects, which summarize results on both PHB spinning methods, but also on general approaches enabling the processing of PHB into forms enabling many applications in food and cosmetics. Second part was focused on the patented composition of the UV protection cream based on the prepared nanoscopic and micro- morphologies of PHB. The third block summarizes results focused predominantly on the electrostatic spinning of PHB and other biopolymers. Finally, a short chapter containing a brief description of projects that were in a way related to the dissertation topic, but rather practical development work in Central Tanzania and West Africa, which draw on knowledge and contacts gained during studies at FCH BUT Brno.
Preparation and characterization of poly-3-hydroxybutyrate copolymers
Kolomazník, Vít ; Kupka, Vojtěch (referee) ; Porubský, Tomáš (advisor)
This thesis evaluates the synthesis of copolymers based on poly-3-hydroxybutyrate (PHB). The goal is to create a material with the highest possible concetration of PHB with the smallest possible volume of crystal phase. PHB with lower molecular weight and hydroxyl end groups used for polyurethane synthesis was prepared by alcoholysis of PHB polymer with 1,4 butanediol. Polyethylene glycole (PEG) of various molar mass and ratio values was chosen in this thesis as a second reacting substance. Another substance used for copolymeration with PHB was the poly(butylene adipate-co-terephthalate) PBAT. Both variants used hexamethylenediisocyanate (HDI) as a non-toxic bonding agent. From these substances, a block copolymers comprised of soft and hard segments were formed. Hard segments are a result of PHB and it‘s crystalic structure. Soft segmets are comprised of PEG or PBAT macromolecules. The influence of soft segments of various length and molar ratio of reactants on overal polyurethane properties was evaluated. Prepared materials were charactrerized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). Molecular weight was measured by gel permeation chromatography (GPC).
Biodegradable seed carriers for large area regeneration of forests
Balej, Marek ; Kučera, František (referee) ; Jančář, Josef (advisor)
This diploma thesis is focused on finding a suitable biodegradable polymer for the construction of mechanically activated forest seed carriers. The subject of the theoretical part of the work is a description of the investigated polymeric materials and characterization of the species composition of trees in domestic forests. Furthermore, the issue of technology to produce these seed carriers for the preparation of prototypes using 3D printing and for high-volume production through plastic injection moulding is elaborated. Finally, in this section, attention is paid to the difference between biodegradable and compostable plastics. The experimental part of the thesis deals with the application of the method of determining the complete aerobic biodegradability of the investigated materials in the soil, measuring the amount of carbon dioxide released and additional DSC, GPC and TGA analysis. It further investigates the saturation of the samples with carbon dioxide, their subsequent temperature-induced batch foaming and SEM analysis of the resulting structure. Finally, it focuses on the preparation of 3D printed prototypes of seed carriers and test specimens, on which the tests of their impact strength and tensile properties are performed. For more detailed analysis, two commercially available bioplastics, NonOilen® and ecoflex® were selected. The test of complete aerobic biodegradability of plastics in soil according to ISO 17556 proved that the biodegradation of NonOilen® and ecoflex® in the soil took place. This was subsequently substantiated by the results of the associated DSC, GPC and TGA analysis. Furthermore, in pressed samples from both materials, it was found by SEM observation that the method of CO2 saturation and subsequent batch, temperature-induced foaming is ineffective in obtaining a porous structure in the given materials. Finally, the impact strength and tensile properties of 3D printed prototypes for the investigated materials (NonOilen® and ecoflex®) were determined using 3D printed test specimens.
In vitro biodegradation of biopolyesters exposed to synthetic gastric juice
Sobková, Markéta ; Skoumalová, Petra (referee) ; Kovalčík, Adriána (advisor)
This bachelor’s thesis is focused on the study of in vitro biodegradation of biopolyesters exposed synthetic gastric juice and phosphate buffer saline with lipase for 81 days. The theoretical part summarises the necessary information about characteristics of biodegradable biopolyesters, deals with their possible applications in medicine. The experimental part deals with the biodegradation of prepared biopolyesters films. in this work, poly(lactic acid), amorphous poly(hydroxy alkanoates), poly(3-hydroxybutyrate), poly(butylene adipate terephthalate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), filament poly(lactic acid) and filament poly(lactic acid)/poly(hydroxybutyrate) were used for the experiment. The films were prepared by dissolving of the biopolyesters in hot chloroform. The dissolving agent was evaporated, and prepared films were dried. Prepared films had different properties depending on the used biopolyesters. Their appearance was formed transparent to milky cloudy. Also, trey differed in their plasticity. During biodegradation, the morphology changed, and the samples gained higher fragility. The effect of biodegradation was monitored by changes in 1) molecular weights (SEC-MALLS), 2) chemical structure (FTIR) and 3) weight loss changes (gravimetrically). The analysed biopolyesters were demonstrably susceptible to biodegradation in simulated body conditions. The degree of biodegradation depends on the type of biopolyester. The most significant weight loss was recorded for the sample of amorphous polyhydroxyalkanoate (PHA). The PHA´original weight was reduced about 84.28 ± 0.03 % after the 81 days of biodegradation in the phosphate-buffered saline with lipase.
Biodegradable seed carriers for large area regeneration of forests
Balej, Marek ; Kučera, František (referee) ; Jančář, Josef (advisor)
This diploma thesis is focused on finding a suitable biodegradable polymer for the construction of mechanically activated forest seed carriers. The subject of the theoretical part of the work is a description of the investigated polymeric materials and characterization of the species composition of trees in domestic forests. Furthermore, the issue of technology to produce these seed carriers for the preparation of prototypes using 3D printing and for high-volume production through plastic injection moulding is elaborated. Finally, in this section, attention is paid to the difference between biodegradable and compostable plastics. The experimental part of the thesis deals with the application of the method of determining the complete aerobic biodegradability of the investigated materials in the soil, measuring the amount of carbon dioxide released and additional DSC, GPC and TGA analysis. It further investigates the saturation of the samples with carbon dioxide, their subsequent temperature-induced batch foaming and SEM analysis of the resulting structure. Finally, it focuses on the preparation of 3D printed prototypes of seed carriers and test specimens, on which the tests of their impact strength and tensile properties are performed. For more detailed analysis, two commercially available bioplastics, NonOilen® and ecoflex® were selected. The test of complete aerobic biodegradability of plastics in soil according to ISO 17556 proved that the biodegradation of NonOilen® and ecoflex® in the soil took place. This was subsequently substantiated by the results of the associated DSC, GPC and TGA analysis. Furthermore, in pressed samples from both materials, it was found by SEM observation that the method of CO2 saturation and subsequent batch, temperature-induced foaming is ineffective in obtaining a porous structure in the given materials. Finally, the impact strength and tensile properties of 3D printed prototypes for the investigated materials (NonOilen® and ecoflex®) were determined using 3D printed test specimens.
PREPARATION AND CHARACTERIZATION OF BIOPOLYMER-BASED NANOPARTICLES AND NANOFIBERS AND THEIR APPLICATION IN FOOD AND COSMETICS
Kundrát, Vojtěch ; Vilčáková, Jarmila (referee) ; Kráčmar, Stanislav (referee) ; Márová, Ivana (advisor)
The presented dissertation thesis deals with the polymer polyhydroxybutyrate and other biopolymers as a basic building block for the construction of micro- and nanoscopic structures and materials used in food and cosmetics. In the theoretical part, current literary review is prepared to introduce the basics of this application field. The practical part of the work is composed of three blocks developed during the doctoral study. In the first and most important part are summarized comments to the academic and patent outputs, where among the academic ones it is possible to find two peer-reviewed articles dealing with the electrostatic and wet spinning of PHB and properties of prepared materials. The patent outputs consist of several accepted and applied projects, which summarize results on both PHB spinning methods, but also on general approaches enabling the processing of PHB into forms enabling many applications in food and cosmetics. Second part was focused on the patented composition of the UV protection cream based on the prepared nanoscopic and micro- morphologies of PHB. The third block summarizes results focused predominantly on the electrostatic spinning of PHB and other biopolymers. Finally, a short chapter containing a brief description of projects that were in a way related to the dissertation topic, but rather practical development work in Central Tanzania and West Africa, which draw on knowledge and contacts gained during studies at FCH BUT Brno.
In vitro biodegradation of biopolyesters exposed to synthetic gastric juice
Sobková, Markéta ; Skoumalová, Petra (referee) ; Kovalčík, Adriána (advisor)
This bachelor’s thesis is focused on the study of in vitro biodegradation of biopolyesters exposed synthetic gastric juice and phosphate buffer saline with lipase for 81 days. The theoretical part summarises the necessary information about characteristics of biodegradable biopolyesters, deals with their possible applications in medicine. The experimental part deals with the biodegradation of prepared biopolyesters films. in this work, poly(lactic acid), amorphous poly(hydroxy alkanoates), poly(3-hydroxybutyrate), poly(butylene adipate terephthalate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), filament poly(lactic acid) and filament poly(lactic acid)/poly(hydroxybutyrate) were used for the experiment. The films were prepared by dissolving of the biopolyesters in hot chloroform. The dissolving agent was evaporated, and prepared films were dried. Prepared films had different properties depending on the used biopolyesters. Their appearance was formed transparent to milky cloudy. Also, trey differed in their plasticity. During biodegradation, the morphology changed, and the samples gained higher fragility. The effect of biodegradation was monitored by changes in 1) molecular weights (SEC-MALLS), 2) chemical structure (FTIR) and 3) weight loss changes (gravimetrically). The analysed biopolyesters were demonstrably susceptible to biodegradation in simulated body conditions. The degree of biodegradation depends on the type of biopolyester. The most significant weight loss was recorded for the sample of amorphous polyhydroxyalkanoate (PHA). The PHA´original weight was reduced about 84.28 ± 0.03 % after the 81 days of biodegradation in the phosphate-buffered saline with lipase.
Preparation and characterization of poly-3-hydroxybutyrate copolymers
Kolomazník, Vít ; Kupka, Vojtěch (referee) ; Porubský, Tomáš (advisor)
This thesis evaluates the synthesis of copolymers based on poly-3-hydroxybutyrate (PHB). The goal is to create a material with the highest possible concetration of PHB with the smallest possible volume of crystal phase. PHB with lower molecular weight and hydroxyl end groups used for polyurethane synthesis was prepared by alcoholysis of PHB polymer with 1,4 butanediol. Polyethylene glycole (PEG) of various molar mass and ratio values was chosen in this thesis as a second reacting substance. Another substance used for copolymeration with PHB was the poly(butylene adipate-co-terephthalate) PBAT. Both variants used hexamethylenediisocyanate (HDI) as a non-toxic bonding agent. From these substances, a block copolymers comprised of soft and hard segments were formed. Hard segments are a result of PHB and it‘s crystalic structure. Soft segmets are comprised of PEG or PBAT macromolecules. The influence of soft segments of various length and molar ratio of reactants on overal polyurethane properties was evaluated. Prepared materials were charactrerized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). Molecular weight was measured by gel permeation chromatography (GPC).

Interested in being notified about new results for this query?
Subscribe to the RSS feed.